
Extended Abstract

Motivation Drug discovery is a very hard and slow process, in particular due to the intractably
large chemical space that has to be searched and the challenge of generating realistic drugs with
desirable biological properties. A task of interest due to the potential of treating multiple diseases is to
quickly develop effective, drug-like ligands to any desired protein binding pocket using computational
tools. Recently, a large language model called Token-Mol Wang et al. (2024) has been proposed that
efficiently generates such ligands given a pocket embedding by tokenizing the SMILES sequence
and ligand geometry. However, their RL finetuning approach to generate more realistic ligands is
on-policy and pocket specific, which is slow and not generalizable.

Method Token-Mol is a transformer that acts on sequences whose vocabulary contains relevant
characters for SMILES strings and geometry information (torsion angles as real numbers). It is
also inherently multi-modal, since it is conditioned on a protein pocket embedding generated by a
pre-trained (and frozen) encoder. We build the preference dataset from CrossDocked2020 Francoeur
et al. (2020) as follows: for each pocket, choose the molecule with best (more negative) binding
affinity as the winning sample, and worst (less negative) binding affinity as the losing sample. We
then propose to use two regularization strategies: Exact Energy Preference Optimization (E2PO) as
proposed by Gu et al. (2024) which counters winning sample overfitting, and adding an NLL loss,
as proposed by Pang et al. (2024) and used in Llama 3 et al (2024). We analyze their train curves
and validation curves to investigate training stability, and compare best performing models. We also
perform an ablation over the DPO parameter β, which dictates how much the learned policy deviates
from the reference policy.

Implementation We implement everything in Python and run all our experiments in one NVIDIA
T4 GPU. The metrics we are interested in investigating are the following: binding affinity (the
"strength" of binding), which is computed using QuickVina2 Alhossary et al. (2015); QED (drug-
likeness), computed using RDKit; synthetic accessibility (SA) (how easy to synthesize), computed
using a custom implementation from Ertl and Schuffenhauer (2009); Lipinski (oral availability),
computed with RDKit; diversity (how different are the molecules for a given pocket), computed
by the pairwise Tanimoto similarity between 5 ligands generated for a given pocket; and validity,
the fraction of chemically valid molecules generated in a given batch. We also report the original
Token-Mol "gaussian cross-entropy loss" (the "language modeling" loss) as the validation loss to
track performance deviation from the original next-token prediction task.

Results Given a fixed β, we observe that even though the E2PO regularization performs slightly
better for binding affinity, NLL regularization performs better for all other drug-likeness metrics.
However, training with NLL is slightly less stable and much more prone for overfitting, so it requires
early stopping to achieve the best performances. From our ablations we find that β = 0.1 finds a good
balance between good binding affinity and other drug-likeness metrics. Comparing to the Token-Mol
baseline, the generated ligands from our best performing model has not only better average metrics,
but also distributions with smaller variance, which shows it consistently generates more drug-like
ligands.

Discussion One interesting observation is that, from our β ablations, it seems like binding affinity
is inversely with diversity, and directly with SA. This is surprising, since intuitively we would expect
lower (better) affinities to cause lower diversity, since the model is likely generating ligands more
similar to the winning sample, and likely lower affinities could be caused by more artificial molecules
that are higher to synthesize. This could be due to artifacts from using a very small validation set size
(necessary due to limited compute), and should be investigated in studies on the full CrossDocked2020
dataset.

Conclusion In this paper, we improve on the ligand-generating language model Token-Mol by
using DPO ranked by binding affinity. We find that both quantitatively and qualitatively our approach
performs better than baseline, with consistently better generated ligands. Future studies should
investigate if results hold or improve when trained and validated on the full CrossDocked2020
dataset.
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Abstract

Generating effective, drug-like candidate ligands for protein binding pockets is
still an open problem in structure-based drug design. Recently, machine learning
methods, such as denoising diffusion and language models, have successfully been
applied to the task. A shortcoming of some of these models is the challenge to
not only generate ligands that will bind well, but that also have desirable drug-like
properties. In this paper, we propose to improve on Token-Mol, a recent ligand-
generating language model, by using Direct Preference Optimization on curated
preference pairs based on the CrossDocked2020 dataset. We investigate different
regularization strategies to the original DPO objective to mitigate winning sample
overfitting, and perform ablation on the DPO β parameter to find the optimal setup.
We find that our approach does better than baseline Token-Mol on both affinity and
drug-likeness metrics, but slightly underperforms in validity of generated ligands,
on a limited validation set. Future chemical language models similarly fine-tuned
with DPO but with larger train and validation sizes would likely show even better
performance, and are a promising direction for better structure-based drug design.

1 Introduction

Developing new drugs that are effective and will respond well in the human body is a challenging
process, that takes a lot of wet-lab time and is very costly. Recently, computer-aided drug design
has dramatically accelerated this process; in particular, structure-based drug design aims to generate
candidate ligands that will bind to a desired protein pocket that is relevant to treating a given disease.
Machine learning methods have been particularly promising for this task, due to their ability to encode
protein pocket information and generate ligands with desired properties. Promising previous work
has attempted to autorregressively generate ligand graphs Peng et al. (2022), or even use denoising
diffusion models Guan et al. (2023). Another recent model of interest is Token-Mol Wang et al.
(2024), which leverages the transformer architecture to generate a string representation (SMILES)
of a candidate ligand along with geometry information in the form of torsion angles, conditioned
on the protein pocket embedding. This approach is interesting since it finds a balance between
the large expressiveness of modern language models with incorporating geometric information that
graph-based methods excel at.

However, a shortcoming of most of these models is that the candidate ligands – even though could
technically bind to the pocket – might not have chemical properties that are important to make sure the
molecule can be easily synthesized, have low toxicity, or be orally available. AliDiff Gu et al. (2024)
addressed this in the context of diffusion models by using Direct Preference Optimization with ligands
ranked by binding affinity scores, whereas Token-Mol used a policy gradient to generate ligands with
a high custom scoring function that incorporates multiple drug-likeness metrics. However, Token-Mol
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finetunes only for individual protein pockets, instead of for the entire protein pocket landscape in the
train set. Moreover, computing the reward function for their on-policy approach is very expensive in
this case, since it involves computing binding affinities. Due to the recent good performance of DPO
in language modeling tasks, in this paper, we propose to address these shortcomings of Token-Mol
by using Direct Preference Optimization (DPO) Rafailov et al. (2024) to – regardless of the protein
pocket – generate molecules that have better drug-likeness properties. We achieve this by, similar to
Gu et al. (2024), curating a preference dataset based on binding affinity and fine tuning Token-Mol
on it.

We also investigate the effect of different regularization strategies to address winning sample overfit-
ting, and compare six drug-likeness metrics with baseline Token-Mol. Due to limited computational
resources, we train and validate on a very small subset of the CrossDocked2020 dataset Francoeur
et al. (2020), which contains around 2k protein-ligand pairs. Even with the small dataset size, we still
observe a slight increase in overall performance from baseline. We presume that training on the full
dataset would likely show more improvements, and can be a promising direction for having better
and faster general-purpose models that generate effective, safe, and synthesizable ligands.

2 Related Work

Recent developments in structure-based drug designed have heavily relied on ML tools for target-
aware ligand generation. An early ligand generation model by Skalic et al. (2019) relied on generative
adversarial networks and a convolutional network to generate the ligand shape conditioned on the
pocket structure, and uses a trained decoder to further generate the ligand SMILES. This approach
is interesting, but can’t be easily cast as a policy and hence it is hard to use RLHF to finetune it to
better drug-like properties. Also working on 3D space, work by Peng et al. (2022) used graph neural
networks to generate ligands based directly based on the pocket geometry, and autorregressively
generate ligand features, but again no preference optimization is involved. Guan et al. (2023) proposed
a target-aware 3D equivariant diffusion model, which generates ligands by denoising atom types,
coordinates, and bonds while keeping required symmetries. Even though this model achieved great
results, it similarly lacked alignment for generating ligands with desired drug-like properties. Gu
et al. (2024) improves on this work by also proposing a ligand-generating diffusion model that
relies on Direct Preference Optimization (DPO) to generate more drug-like ligands, which showed
significant improvements. They also propose a new regularization strategy to mitigate winning sample
overfitting called Exact Energy Preference Optimization (E2PO), which shifts the winning sample
distribution towards the theoretical optimum. Also attempting to regularize the DPO loss, Pang et al.
(2024) proposes to add a negative log-likelihood term, which acts oppositely to E2PO and explicitly
encourages preferring the winning sample, and was successfully used by Llama 3 et al (2024).

Inspired by these methods, our approach improves on previous work by RL finetuning the ligand-
generating language model Token-Mol with DPO. Token-Mol is the first of its kind in being token-only
and can hence likely benefit from DPO due to its success on language modeling tasks. The different
regularization strategies – both one that was successful in ligand design and another in a renowned
LLM – applied to Token-Mol, which matches both descriptions, could likely generate performance
gains.

3 Method

Token-Mol is a transformer language model that relies on the GPT-2 architecture. However, Token-
Mol to some extent is multimodal, since its output must also depend on the protein pocket embedding.
For this, they also use a custom multi-head cross-attention (which they term "condition attention"),
such that generated tokens can attend to the pocket embeddings. See the picture below with the
Token-Mol architecture, extracted from their paper:
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Figure 1: Token-Mol architecture, showcasing the cross-attention mechanism that allows generated
tokens to attend to the pocket embedding. Source: Wang et al. (2024)

The pocket embedding is generated with the model from Zhang et al. (2023), with parameters frozen
during training. For our experiments, we use the pretrained version of Token-Mol that is fine-tuned
on ligand generation tasks for protein pockets. Given a pocket embedding, Token-Mol generates the
ligand in the following format: "<SMILES> GEO <angle1> <angle2> <angle3> ...", where <angle>
corresponds to the torsion angles that define the conformation. Their tokenizer is based on BERT
with a custom vocab that contains relevant tokens for SMILES strings.

For DPO, recall that from Rafailov et al. (2024), given a preference dataset D = {(p,mw,ml)} with
protein pockets p, and winning/losing samples mw/ml, respectively, they propose to optimize the
following loss:

LDPO = −E(p,mw,ml)∼D[log σ(β log
pθ(m

w|p)
pref (mw|p)

− β log
pθ(m

l|p)
pref (ml|p)

)] (1)

where pθ, pref are the probabilities of generating a candidate ligand for the current and reference
(base model) policies, respectively, β is a hyperparameter, and σ is a sigmoid function. In our case,
log p(out|in) is computed as usual with language models: sum the log probabilities of each generated
token when feeding the sequence to the model. By optimizing this loss, the model should assign
higher/lower probability for winning/losing samples, respectively, and hence likely generate better
ligand candidates. See the figure below for an illustration of the idea, taken from the AliDiff paper:

Figure 2: Illustration of the idea behind DPO in our setup. Source: Gu et al. (2024)

However, this approach is prone to overfitting to the winning sample, that is, assigning zero probability
to the losing sample, which is undesirable and generates instabilities since the loss blows up. Hence,
we follow the approach in Gu et al. (2024) to regularize this loss by shifting the distribution pθ
towards the optimal value of σ(rw − rl), where r are the rewards. They propose the following
regularized loss, termed Exact Energy Preference Optimization (E2PO):
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LE2PO = −[σ(rw − rl)LDPO + (1− σ(rw − rl))(1− LDPO)] (2)

To study the opposite direction, inspired by Llama 3 et al (2024) and Pang et al. (2024), we also
attempt to explicitly encourage the model to assign higher probabilities to the winning sample by
adding a negative log-likelihood term:

LNLL-DPO = LDPO − αE(p,mw,ml)∼D

[
log pθ(m

w|p)
|mw|

]
(3)

This is interesting since Pang et al. (2024) observed significance performance gains from including
this term, which helps the model learn more from the winning sample.

One thing to note is that when training, as a "validation loss" we also report the performance of the
model under the original Token-Mol loss function to track if the model still does well in the base
task. They propose a custom "Gaussian Cross Entropy" (GCE) loss, which instead of weighing labels
from all tokens besides the ground-truth token with zero, weighs with values taken from a gaussian
distribution centered around the true label. Assigning nonzero weights to neighboring tokens attempts
to embed more continuity in the model and hence perform better for generating torsion angles, which
are inherently continuous.

4 Experimental Setup

4.1 Dataset

We rely on a downsampled version of CrossDocked2020 Francoeur et al. (2020), which contains
protein ligands cross-docked across multiple similar binding sites, which augments the usual PDBbind
dataset by also including lower quality docking examples. Our filtering process is similar to Gu et al.
(2024) and involves selecting docking poses that don’t deviate more than 1 Angstrom from the ground
truth, and proteins whose sequence identity are smaller than 30% (to ensure they are significantly
different).

For the preference dataset, we have the following strategy: for each protein pocket, select the winning
sample as the ligand with highest (more negative) binding affinity, and the losing sample as the one
with lowest (less negative) binding affinity. Gu et al. (2024) noted that ranking samples based on
binding affinity gives the best performance in their case, so we follow this approach. We end up with
around 2K preference pairs for training, and 10 for validating. We realize 10 is a very small number
to have any generalizable conclusions, but we had to limit the size due to the large time for docking
and computing affinity of generated ligands during validation, and we can still perform interesting
ablations with it.

4.2 Baselines

We compare our model with base Token-Mol, that is, Token-Mol before RL finetuning on individual
pockets, since their approach is pocket specific and not generalizable for arbitrary pockets.

4.3 Evaluation Metrics

We evaluate our model on six metrics. First we compute binding affinity, that is, the free energy
change when a ligand binds to a given protein pocket. The more negative the binding affinity, the
stronger the binding, since it means the docked state has a lower energy. We estimate the binding
affinity from the Vina score from the QuickVina2 Alhossary et al. (2015) program. Second, molecules
that are drug candidates need to satisfy certain properties. To quantify a molecule’s drug-likeness,
we report the QED (composite score of desirable chemical properties in a drug, higher is better),
Lipinski score (likelihood of being orally available, higher is better), synthetic accessibility (SA)
(ease of synthesizing, higher is better), and validity (whether the SMILES string corresponds to a
chemically valid molecule). Finally, for the entire validation set we compute the diversity (higher is
better) of generated ligands by computing pairwise Tanimoto similarity scores between 5 generated
ligands for a given pocket.
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5 Results

5.1 Effect of Regularization

First, we fix β = 0.1, batch size 16, learning rate 1e-6, and investigate the effect of the different
regularization strategies in both the training process and validation. See the figures below for the
train/val curves. Recall that the train loss is the DPO loss, whereas the val loss is the Token-Mol GCE
loss.

Figure 3: Train and val loss curves for non-regularized (purple), E2PO regularization (red), and NLL
regularization (yellow). We applied a moving average to smooth the plot and observe the general
trends.

We observe that using the E2PO regularization increases training stability, whereas NLL makes it
much more unstable. To some extent, this makes sense, since the E2PO loss tries to counter giving
too much weight to either winning or losing samples, but the NLL loss directly encourages the model
to steer towards the winning sample through a term that is unbounded (no sigmoid), and hence can
likely generate less stable gradients if the probability of the winning sample is initially small, which
could be the cause of the initial increase in the DPO loss of the NLL curve. As for validation, we
see that both non-regularized and E2PO regularized decrease the cross entropy loss ("GCE" loss for
Token-Mol), which means the model is still doing well at next-token prediction. However, the NLL
curve shows an increase, which likely means the model is indeed overfitting strongly to the winning
sample, likely steering towards memorization, which could be undesirable.

We also compute the metrics of the best performing models with respect to binding affinity in each of
the above training runs. See the table below:

Table 1: Performance Comparison of different regularization strategies
Regularization Affinity (↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) Validity (↑)

None -7.55 0.49 0.65 4.29 0.89 0.6
E2PO -7.68 0.49 0.65 4.27 0.89 0.6
NLL -7.64 0.57 0.67 4.5 0.89 0.8

With regards to binding affinity, we see that E2PO regularization does slightly better than NLL, and
both do better than no regularization. For all other metrics, NLL does better than both no regularization
and E2PO, especially QED (molecule’s drug-likeness), Lipinski score (oral availability), and validity,
which all are good indications of molecules that are likely better drug candidates. Interestingly, the
diversity is quite similar between them, which shows that NLL is actually likely not (yet) memorizing
the winning sample as discussed above, which is again desired behavior. Moreover, as we see the
increased validation loss of NLL and consistent decrease in DPO loss, this overfitting generates
worse performance in the later iterations, so our optimal model was an early-stopped checkpoint.
This shows that even though NLL regularization is more prone to overfitting, it generates better
performance in the early stages of training.
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5.2 β Ablations

In the DPO loss, the β hyperparameter controls how much the learned policy deviates from the
reference policy, and different values of β can generate different downstream model performances.
Hence, we perform an ablation over β to learn how different metrics scale with β. We use the NLL
regularization with the same hyperparameters as in the previous section. See the results in the figure
below:

Figure 4: Beta ablations for all six studied metrics.

We see that better (more negative) affinities seem to be inversely proportional to β, whereas validity,
QED, Lipinski seem to find a good balance at β = 0.1. Moreover, the SA is decreasing with β,
whereas the diversity is increasing. Intuitively, we in fact would expect a different scaling, that lower
β would be correlated with a lower diversity, since it would likely mean the model is predicting more
of similar molecules that bind well to the site. The scaling with SA makes sense: better affinities
likely mean molecules that are less realistic or harder to synthesize. Interestingly, the validity slightly
increases with better affinity, which is not necessarily expected but is desired behavior from the
model. One possible reason for these unexpected scaling relationships is an artifact of the very small
validation set size, which is likely not large enough to highlight general trends, but they still tell
something about how these metrics scale for the given proteins in the validation set.

5.3 Performance of Final Model

Using the hyperparameters of the best model from the experiments above, we get the following final
metrics on the validation set, where we compare our approach with the Token-Mol baseline:

Table 2: Performance Comparison of our approach vs Token-Mol baseline
Model Affinity (↓) QED (↑) SA (↑) Lipinski (↑) Diversity (↑) Validity (↑)

Token-Mol Baseline -7.45 0.53 0.65 4.42 0.89 0.9
Ours -7.64 0.57 0.67 4.5 0.89 0.8

We see that in all metrics but validity, our model does better than the baseline, which shows that
preference optimization guided by binding affinity is in fact able to improve most drug-likeness
metrics. For a more thorough evaluation, we can also investigate the distribution of the metrics
instead of only average values, which can give insight into how precise the model really is. See the
figure below:
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Figure 5: Distributions for four of the six metrics in the validation set (validity and diversity are
numbers associated with the entire set of generated ligands). The yellow horizontal line in each box
represents the median of that distribution.

We immediately see that the median values of both QED and SA have a much larger gap between
our model and the baseline compared to average values. This is good, since it shows the majority
of generated samples are more drug-like and more easily synthesizable. The median affinity is
comparable to the baseline, but the distribution has a much smaller variance, and so does the SA
distribution). This shows that the model is much more consistently generating better binding, more
drug-like, and easily synthesizable candidate ligands, which is exactly what we desire from a good
ligand-generating model.

5.4 Qualitative Results

For a qualitative comparison of our model with the baseline above, we sample 5 candidate ligands for
the adenosine A2A receptor, which has a binding pocket that has been target for multiple therapeutic
applications; in particular, recently this pocket has been investigated for treatment of Parkinson’s
disease, and developing good ligands for it is of significant interest. See the figure below:
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(a) Ours (b) Token-Mol baseline

Figure 6: Generated ligands for ARA2A for our approach (left) and baseline (right)

From visually inspecting the molecules, we see that the ones from the baseline have some instances
of multiple fused rings. Even though this can be beneficial for certain applications, it also makes
synthesis harder, which is consistent with our results of larger SA for our model. Moreover, we
visually see that the baseline ligands seem to have more oxygen (red) and nitrogen (blue), which
can increase the number of hydrogen bond donors and acceptors, which can get it closer to violating
Lipinski’s rule of 5 and making it less orally available; we see this manifesting in higher Lipinski
scores for our model. The set of ligands generated from our approach also contain only one molecule
with a visually suboptimal conformation (atoms from different substructures too close to each other,
seemingly unnatural torsion angles, etc), whereas the baseline contains two.

6 Discussion

From the experiments above, we see that fine-tuning Token-Mol on a preference dataset ranked by
binding affinity using DPO showed significant overall improvements in both binding affinity and
drug-likeness metrics. However, there are multiple limitations of our approach. The first obvious
issue is that we trained and validated on a very small dataset, which makes it hard for the model
to learn well, and our observed trends could be due to our artifacts of the small validation set.
Moreover, we weren’t careful in curating the validation set, so the chosen pockets will definitely
not be representative of general behavior we would like a general, deployable model to have. The
reason we worked with such small dataset sizes was due to limited compute resources and time, since
docking and estimating binding affinity is a computationally expensive process.

However, the fact that DPO did slightly improve desired drug-likeness metrics is a good indication of
the promise of this approach in chemical language models, and it could have large impacts in building
faster, more effective drug design pipelines.

7 Conclusion

In this paper, we introduce using Direct Preference Optimization to improve the drug-likeness of
ligands generated through the Token-Mol chemical language model for arbitrary protein binding
pockets. Token-Mol previously relied in an on-policy RL finetuning approach, which is computation-
ally expensive and pocket specific, so our innovation is making the finetuning approach general and
faster through the off-policy nature of DPO. This is also beneficial since it has been shown that the
contrastive nature of DPO helps with better language model alignment, and we leverage this for more
drug-like ligands. We also investigate different regularization strategies to possibly mitigate winning
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sample overfitting, and see that the NLL regularization used by et al (2024) performs better in early
stages of training, but overfits more easily and requires early stopping. We also observe surprising
trends during β ablations, such as better binding affinity scaling with ligand diversity, which we
discuss is possibly an artifact of the small dataset size. However, we still observe improvements
from the baseline, which is an indication that our approach was able to help generate more drug-like
ligands.

For future work, it is imperative that this approach is trained and validated with the full Cross-
Docked2020 dataset. This will not only give the model more preference data to better learn what
constitutes better or worse drug candidates, but also allow for a more thorough validation. Moreover,
even though Gu et al. (2024) found better results with ranking based on binding affinity, it could
be interesting to study the effect of different reward scores in the Token-Mol setting, such as using
composite metrics that mix both affinity with drug-likeness metrics. Finally, it is important to validate
this approach on real-world drug-discovery targets to verify the quality of the generated molecules
and more thorough assessment of their therapeutic value.

8 Team Contributions

• Rafael Prado Basto Since this was an individual project, I was responsible for all of the
project. In particular, the tasks that took a significant amount of time were downloading and
processing the CrossDocked2020 dataset to generate the preference pairs, writing the DPO
training script from scratch, and modifying/adapting the Token-Mol generation/logging code
to support the new metrics and DPO training script.

Changes from Proposal As discussed in the milestone, my initial plan was to use Diffusion Policy
and guidance to generate ligands for binding at a protein pocket. However, from better looking at
the Diffusion Policy literature, I realized that implementing it in the significantly different context of
molecule generation through diffusion would be impractical for a class project, since we would have
to make multiple modifications to the original implementation (such as carefully reformulating the
action space) and diffusion also likely would be harder to train. Hence, I pivoted to using DPO for
optimizing Token-Mol on pocket-based ligand generation, as shown above.

Code availability Code is available at https://github.com/rbasto19/cs224r_final_
project.git. Note that in my gradescope submission I only uploaded some of the main files
(not the subdirectories) and training data, which are very large. The repo contains more detailed code
and instructions for generating the training data.
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